Non-abelian extensions of Rota-Baxter Lie algebras and inducibility of automorphisms

نویسندگان

چکیده

A Rota-Baxter Lie algebra gT is a g equipped with operator T:g→g. In this paper, we consider non-abelian extensions of by another hS. We define the cohomology Hnab2(gT,hS) which classifies equivalence classes such extensions. Given extension algebras, also show that obstruction for pair automorphisms in Aut(hS)×Aut(gT) to be induced an automorphism Aut(eU) lies group Hnab2(gT,hS). As byproduct, obtain Wells short-exact sequence context algebras. Finally, how these results fit abelian

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Differential Rota-baxter Algebras

Abstract. A Rota-Baxter operator of weight λ is an abstraction of both the integral operator (when λ = 0) and the summation operator (when λ = 1). We similarly define a differential operator of weight λ that includes both the differential operator (when λ = 0) and the difference operator (when λ = 1). We further consider an algebraic structure with both a differential operator of weight λ and a...

متن کامل

Free Rota – Baxter Algebras and Rooted Trees

A Rota–Baxter algebra, also known as a Baxter algebra, is an algebra with a linear operator satisfying a relation, called the Rota–Baxter relation, that generalizes the integration by parts formula. Most of the studies on Rota–Baxter algebras have been for commutative algebras. Two constructions of free commutative Rota–Baxter algebras were obtained by Rota and Cartier in the 1970s and a third ...

متن کامل

An Identity in Rota-baxter Algebras

We give explicit formulae and study the combinatorics of an identity holding in all Rota-Baxter algebras. We describe the specialization of this identity for a couple of examples of Rota-Baxter algebras.

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

Rota–baxter Algebras in Renormalization of Perturbative Quantum Field Theory

Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota–Baxter algebras enters the scene. In this note we revi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2023

ISSN: ['1873-1856', '0024-3795']

DOI: https://doi.org/10.1016/j.laa.2023.04.005